Why Older Adults Need to Build Power

Slowing down. Losing one’s spring in their step. These are common refrains that we associate with getting older. And there is a kernel of truth here. While aging is associated with a decrease in muscular strength of 1-2% yearly, the decline in muscular power is about 3.5% per year [1]. This loss in muscle power is largely due to the decrease in size and number of Type-II muscle fibers (commonly referred to as “fast twitch”). This decrease in Type-II muscle fibers (and subsequent decline of muscular power) is associated with a host of negative outcomes such as decreased quality of life and loss of independence in daily activities [2]. Fortunately, research shows that training specifically for power can help older athletes improve muscle power [2].

Research shows that training specifically for power can help older athletes improve muscle power

What exactly is muscular power?

Muscular strength and power are related physical qualities that we can improve through training. Strength refers to the ability to maximally produce force, regardless of the velocity of the contraction. For example, performing a deadlift from the floor with maximum load but at a slow speed is an expression of maximum strength. Power, on the other hand, is the ability to express force but at high velocities (for the nerds like myself, Power=Force x Velocity). For example, jumping as high as possible is an expression of maximum power since the force produced is lower, but it is performed at a higher speed.

Strength and power are related since developing strength helps to produce the high levels of force needed to express power. However, for maximum power we also need to be able to express that force at high velocities.

So how do we maximize muscle power?

First, we want to develop a base of muscular strength, since improving the ability to produce force is the foundation for developing power. Once a baseline of strength has been developed, we can add in power training. This involves the use of light to moderate loads, where we move the load as fast as possible during the concentric phase*. For example, in a squat this would mean performing the rising up portion of the movement as quickly as possible.

While many protocols exist for power training, the recommended protocol for older adults is to perform 1-3 sets of 6-8 repetitions performed at 40-60 %1-Repetition Maximum (%1RM) [2,3].  With power training we want to maintain high velocities, so we perform a lower number of reps and stay well away from muscular failure. Another way to select loads, is to use the Rating of Perceived Exertion scale (RPE). This scale ranges from 1-10, with 1-2 meaning “Little to no effort” and 10 meaning “Maximum effort”. For the purpose of power exercises, we want to select the heaviest load possible, while staying at a 3-4 RPE (“Light effort”) [4]. Now, this does not mean that power training should be easy. There should still be a high degree of focus on moving the weight explosively. Picking weights that correspond to a “Light effort” ensures that we can maintain high velocities during training.

With power training we want to maintain high velocities, so we perform a lower number of reps and stay well away from muscular failure

For the tempo of power exercises, I prescribe these for each phase of the movement (eccentric, pause at end range, concentric)*. For power movements, we will use a tempo of 3-1-X. These means a 3 second lower, followed by a 1 second pause, and a concentric phase performed as fast as possible (“X”). So for a squat, we would lower down for 3 seconds, pause for 1 second, and then rise up as quickly as possible.

In general, power exercises are best performed with multijoint movements, since we typically express power with full body movements, rather than isolated, single joint motions.

Wrapping Up

Muscular power is a vital quality that needs to be trained specifically in the aging athlete. Power training is effective in improving muscular power and should be performed after a baseline of strength has been developed. Below is a table summarizing the protocol for power training for the older adult:

Frequency1-2 days/week
Load/Intensity40-60 %1RM or heaviest possible load @ 3-4 RPE (“Light effort”)
Sets1-3
Reps6-8
Tempo3-1-X (3 sec lower, 1 sec pause, lift quickly)
Example ExercisesSquats, lunges, pushups, rows


Note: There are MANY other exercises that can be performed for power training, these are just a few example options. Also, sport specific power training varies so the parameters for that will look different depending on the goal of the client.

*The concentric portion of the movement is when when we move the weight/our body. The eccentric portion is where we are lowering/slowing down the weight/our body. For example, in a squat, controlling the lower down portion is the eccentric phase, whereas, rising up to standing is the concentric phase. Similarly, in a row, the controlled lowering of the weight is the eccentric phase, while the pulling of the weight up to the chest is the concentric phase.


References

  1. Signorile, Joseph. “Power Training for Older Adults.” IDEA Health & Fitness Association, IDEA Health & Fitness Association, 30 Nov. -1, https://www.ideafit.com/personal-training/power-training-older-adults/.
  2. Fragala, M. S., Cadore, E. L., Dorgo, S., Izquierdo, M., Kraemer, W. J., Peterson, M. D., & Ryan, E. D. (2019). Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. Journal of strength and conditioning research, 33(8), 2019–2052. https://doi.org/10.1519/JSC.0000000000003230
  3. Miszko, T. A., Cress, M. E., Slade, J. M., Covey, C. J., Agrawal, S. K., & Doerr, C. E. (2003). Effect of strength and power training on physical function in community-dwelling older adults. The journals of gerontology. Series A, Biological sciences and medical sciences, 58(2), 171–175. https://doi.org/10.1093/gerona/58.2.m171
  4. Helms, E. R., Cronin, J., Storey, A., & Zourdos, M. C. (2016). Application of the Repetitions in Reserve-Based Rating of Perceived Exertion Scale for Resistance Training. Strength and conditioning journal, 38(4), 42–49. https://doi.org/10.1519/SSC.0000000000000218

How to Pick Resistance Exercises for Older Adults

How to pick the best resistance exercises for older adults to maximize functional improvements, muscle mass, and strength

With an increasingly large population of older adults, leading health organizations, such as the World Health Organization (WHO), have created exercise guidelines for older adults to improve their health and well-being. Exercise, specifically resistance training, helps adults maintain high levels of function and slow down the decrease in muscle mass, strength, and power that comes with age (1). Current WHO guidelines recommend performing muscle strengthening activities at moderate or greater intensity that involve all major muscle groups on 2 or more days a week. However, little guidance exists on what resistance exercises older adults should perform. Here we’ll answer that question.

When selecting resistance exercises for the older adult, our aim is to:

1. Match the exercises to the client’s goals, balance/coordination capabilities, mobility levels, medical history, injury/pain history, and equipment access

2. Maximize functional improvements (such as improving transfers-including floor transfers), along with muscle mass and strength

3. Select a number of exercises that match the client’s current fitness level and recovery capacity

Fundamental Exercises

These exercises include basic movements that efficiently target major muscle groups and carryover to functional activities. Since there are only four exercises here, these exercises can be a great starting point for clients with lower fitness levels. We’ll go through exercises for the lower and upper body.

Lower Body

Age-related decreases in muscle strength and mass are more pronounced in the lower limbs and can significantly impact functional independence and fall risk (2). Therefore, strengthening the lower body is vital for the older adult.

Two fundamental exercises for the lower body are the squat and the lunge. These exercises not only effectively target the major muscles of the lower body, but also carryover to tasks such as transfers and negotiating stairs.

The highest level squat is the traditional barbell back squat. However, this exercise may not be ideal for those with upper body mobility limitations, poor tolerance to axial loading of the spine, compromised balance, or difficulty coordinating the exercise. To decrease balance and coordination demands, the Smith Machine back squat and hack squat are viable alternatives. The hack squat also requires less upper body mobility than the back squat, so may be better for certain clients.

For those who do not tolerate higher axial spinal loading (such as the exercises listed above), clients can perform goblet squats or unloaded bodyweight squats. However, these standing squat variations require some balance and coordination so may not an ideal starting point for all clients. This brings us finally to the leg press. This variation places minimal axial load on the spine, requires minimal balance and coordination, and can be a starting point for those who cannot yet perform a bodyweight squat. So a sample squat progression for a client could be:

Leg press > bodyweight squat > goblet squat

The lunge is an excellent complement to the squat that can be easily scaled. At the highest level, we have the barbell lunge (analogous to the barbell squat). However, for the same reasons listed above some clients may need other exercise options. To accommodate for decreased upper body mobility, lunges can be performed with dumbbells held at the sides or in the goblet position. Also, for those clients who have difficulty coordinating the lunge or lack the requisite strength to perform a bodyweight lunge, a countertop can be used for upper body assistance. A sample lunge progression could be:

Lunge with countertop assistance à bodyweight lunge à lunge with dumbbells held at sides

Upper Body

Upper body strength is vital for performing daily activities such as carrying groceries, housework, and yardwork. To that end, we’ll prioritize compound, multijoint movements that can be adequately loaded and scaled. Ideal upper body exercises include the chest press, row, shoulder press, and lat pulldown.

The chest press can be performed with a machine, dumbbells, barbell or bodyweight (i.e. a pushup). I personally like pushups because they can be easily scaled to a client’s ability, ranging from being performed against a wall to on the floor. Similarly, rows are versatile and can be performed with a machine, dumbbells, or bodyweight (such as TRX rows). Shoulder presses also can be performed with dumbbells, barbells, or a machine, but if a client has upper body mobility limitations, the incline press can be a substitute exercise. Likewise, the lat pull down exercise can be difficult for some clients due to upper body mobility restrictions or height limitations (i.e. to grab the handle of the machine), so variations such as a high row may be better for those clients.

Note that barbell bench or incline presses require a spotter or safety arms to be performed safely. Also, when adequately loaded, dumbbell shoulder and chest presses should be performed with a spotter for safety. Therefore, selecting these exercises depends on the level of supervision the client will have.  

In general, the machine chest press or pushup and machine row can be performed by most clients, so serve as an excellent starting point for upper body strengthening.

Accessory Exercises

For many clients, just focusing on the fundamental exercises above will be a challenging initial training program. As a client gets fitter, accessory exercises can be added to further increase strength, muscle mass, and functional capacity. These accessory movements address some muscles that are not well stimulated by the above exercises, provide increased exercise volume, and decrease the monotony of training by providing exercise variety.

Lower Body

In the squat and lunge all the vastus muscles are adequately activated. However, the rectus femoris is not well developed due to its biarticular nature, performing both hip flexion and knee extension. The rectus femoris is a crucial muscle for ambulation and postural balance and is best developed by including knee extension exercises or straight leg raises (2). Similarly, the hamstring muscle group is not sufficiently loaded in the squat, so we should add in hamstring focused movements such as knee flexion exercises (2).

The gluteus medius plays a critical role in hip stabilization during gait and in single leg stance, but is not loaded sufficiently with movements such as the squat. Exercises such as side lying or standing hip abduction help fully develop hip stability.

Lastly, the triceps surae group helps maintain balance and is important during ambulation (2). For optimal development of this muscle group, we can add in heel raises, which also can be scaled from seated to performing standing with a single leg.

Upper Body/Trunk

The chest press and row stimulate the major muscles of the upper body, however additional loading of the elbow flexors and extensors can further increase upper body muscle mass and strength. Biceps curls and triceps push downs are just two examples of exercises to further load the arms.

Also, while free weight exercises stimulate the abdominal muscles (3), focused abdominal exercises provide a more robust stimulus. Some example exercises include the seated Pallof press and isometric front plank, which are simple to perform and are tolerated well by most clients.

Summary of Exercises to Select

Here we’ve covered the exercises that best address the needs of older adults and tend to work best in practice. Note that there are nearly an infinite number of exercises and variations that we cannot possibly cover in a single post.

To wrap up, a fundamental resistance training program should include a variation of the:

  • Squat
  • Lunge
  • Chest press
  • Row

The shoulder press and lat pull down (or their variations) may be included as well if the client is able to perform these exercises.  

For optimal muscle mass, strength and functional gains, we can add accessory exercises including:

  • Knee extension and flexion
  • Hip abduction
  • Heel raises
  • Elbow flexion and extension
  • Abdominal exercises such as Pallof presses and the front plank

In general, the fundamental resistance exercises are a good starting point and over time the accessory exercises can be added in. For more specifics on creating an exercise program for older adults check out Dr. Mariana Wingood’s Masterclass!

References:

  1. Fragala, M. S., Cadore, E. L., Dorgo, S., Izquierdo, M., Kraemer, W. J., Peterson, M. D., & Ryan, E. D. (2019). Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. Journal of strength and conditioning research33(8), 2019–2052. https://doi.org/10.1519/JSC.0000000000003230
  2. Ribeiro, A. S., Nunes, J. P., & Schoenfeld, B. J. (2020). Selection of Resistance Exercises for Older Individuals: The Forgotten Variable. Sports medicine (Auckland, N.Z.)50(6), 1051–1057. https://doi.org/10.1007/s40279-020-01260-5
  3. Oliva-Lozano, J. M., & Muyor, J. M. (2020). Core Muscle Activity During Physical Fitness Exercises: A Systematic Review. International journal of environmental research and public health, 17(12), 4306. https://doi.org/10.3390/ijerph17124306 Core activation

5 Strategies to Manage Pain Today

Disclaimer: This information is not medical advice and should not be treated as such. This post is for general educational purposes only and you should consult with a licensed healthcare provider for specific guidance.

I get asked quite often “I have this ache or pain, what do I do?” While specific aches and pains need a bit more assessment*, there are general strategies that you can implement today for musculoskeletal pain. We are focusing on strategies that are efficient in terms of time and money, as well as, have minimal side effects.

1. Improve sleep hygiene.

Sleep not only influences our body’s ability to recover after injury, but also influences our perception of pain. Studies demonstrate a connection between poor sleep and perception of pain [1, 2]. Furthermore, sleep disturbances are considered a risk factor for developing chronic pain [3]. Here are a few simple tips from the Centers for Disease Control and Prevention (CDC), that require minimal initial investment (<$10):

-Have a consistent bedtime and wake up time
-Keep your bedroom dark, quiet, relaxing and at a cool, comfortable temperature
-Avoid caffeine, alcohol, large meals or lots of fluid intake before bed
-Don’t use electronic devices in the bedroom-it should be for sleep and sex only
-Exercise daily

If you still have sleep difficulties even with implementing these steps, consult a licensed practitioner who can help further with issues such as sleep apnea.

2. Exercise daily, especially aerobic exercise

Research shows that aerobic exercise performed at least 75% of VO2 Max [4] or roughly at an intensity where you can talk, but not sing, decreases sensitivity to pain. Aerobic exercise has been recommended as part of a treatment approach for chronic pain [5]. This can take a variety of forms such as walking, swimming, biking, rowing, dancing, and more.  

3. Manage stress levels

Stress and our emotional state influences our perception and response to pain. Research shows that cognitive stressors can significantly impact our perception of physical pain [6]. Beyond that, stress has real physiological effects (such as elevating cortisol levels and increasing inflammatory markers) that directly affect whatever tissue may be irritated [7]. Ideally, we want to remove chronic stressors, however this is often not possible. Fortunately, there are tools that you can use today, recommended by the American Psychological Association (APA), that can help mitigate the effects of chronic stress:

-Eat a well-balanced diet
-Perform muscle relaxation exercises-Perform mindfulness based meditation
-Sleep well
-Get regular physical activity
-Spend time in nature
-Take time for pleasurable leisure activities

If you chronically struggle to manage stress, even with interventions like the ones described above, consult a licensed practitioner for further guidance.

4. Try thermal modalities like ice packs, heating pads/hot packs/hot baths

For acute injuries, I recommend the updated guidelines of “PEACE & LOVE” (the updated version of “RICE”) and consulting a licensed medical provider. However, after the acute injury phase, the response to hot or cold varies by individual. Some people swear by ice packs. Others love hot Epsom salt baths. Overall, I feel comfortable recommending trying hot or cold since they typically have no side effects and are highly accessible.  

5. See a qualified physical therapist or other musculoskeletal provider

If the first four steps don’t work, I’d recommend a formal consult with a clinician (like myself or others)* who is familiar with the biopsychosocial model and promotes a proactive, independent approach to rehab.

What is the biopsychosocial model? This is an emerging model that views pain as a multifactorial experience. Many factors such as your stress levels, sleep quality, emotional state, and what is happening at a tissue level play a role in your experience of pain and your response to it. The experience of pain can occur with or without actual tissue damage. In contrast, older models of rehab viewed pain through a purely “biomechanical” lens, meaning that pain only occurs because a tissue is damaged e.g. your back pain hurts only because you didn’t “lift with your legs”. A good clinician can help you determine what factors to focus on and how, in order to maximize your recovery.  

So there we have it, some general strategies for managing musculoskeletal pain. In another post we’ll cover exercise modification in the presence of pain!

*I recommend a formal consult because:

  1. Without more information (i.e. pain/injury history, beliefs about pain, lifestyle factors, medical history, etc.), a clinician cannot accurately determine what factor relate to someone’s pain. I cannot responsibly recommend specific solutions without further assessment.  
  2. Interventions for pain and returning to activity tend to work best with coaching and feedback, rather than a one off answer. For example, if someone has knee pain during a squat, we might try different ranges of motion to find a squat that doesn’t exacerbate symptoms. Then we might examine their symptoms after 24 hours and over weeks of training and adjust accordingly. There is simply too much feedback to be encapsulated in a “just do this one thing” recommendation.

References:

  1. Finan, P. H., Goodin, B. R., & Smith, M. T. (2013). The association of sleep and pain: an update and a path forward. The journal of pain14(12), 1539–1552. https://doi.org/10.1016/j.jpain.2013.08.007
  2. Wei Y, Blanken TF, Van Someren EJW. Insomnia Really Hurts: Effect of a Bad Night’s Sleep on Pain Increases With Insomnia Severity. Frontiers in Psychiatry. 2018 ;9:377. DOI: 10.3389/fpsyt.2018.00377. PMID: 30210367; PMCID: PMC6121188.
  3. Generaal, E., Vogelzangs, N., Penninx, B. W., & Dekker, J. (2017). Insomnia, Sleep Duration, Depressive Symptoms, and the Onset of Chronic Multisite Musculoskeletal Pain. Sleep40(1), 10.1093/sleep/zsw030. https://doi.org/10.1093/sleep/zsw030
  4. Jones, M. D., Booth, J., Taylor, J. L., & Barry, B. K. (2014). Aerobic training increases pain tolerance in healthy individuals. Medicine and science in sports and exercise46(8), 1640–1647. https://doi.org/10.1249/MSS.0000000000000273
  5. García-Correa, H. R., Sánchez-Montoya, L. J., Daza-Arana, J. E., & Ordoñez-Mora, L. T. (2021). Aerobic Physical Exercise for Pain Intensity, Aerobic Capacity, and Quality of Life in Patients With Chronic Pain: A Systematic Review and Meta-Analysis. Journal of physical activity & health18(9), 1126–1142. https://doi.org/10.1123/jpah.2020-0806
  6. Marie Hoeger Bement, Andy Weyer, Manda Keller, April L. Harkins, Sandra K. Hunter, Anxiety and stress can predict pain perception following a cognitive stress, Physiology & Behavior, Volume 101, Issue 1, 2010, Pages 87-92, ISSN 0031-9384, https://doi.org/10.1016/j.physbeh.2010.04.021.
  7. Hannibal, K. E., & Bishop, M. D. (2014). Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Physical therapy94(12), 1816–1825. https://doi.org/10.2522/ptj.20130597

Should Older Adults Only Lift Light Weights?

Many exercise programs for older adults recommend lifting light weights, for high reps. But is this really the best recommendation?

To answer that question we first need to ask, why are we training? For older adults, we should prioritize strength (the ability to produce high amounts of force) and hypertrophy (an increase in muscle mass). As discussed here, these qualities tend to decrease with age, so resistance training should develop and maintain them.

How we develop strength and hypertrophy depends on the weight of the load and the number of reps performed.

Broadly speaking, we can classify loads as heavy (5-10 reps), moderate (10-20 reps), and light (20-30 reps) [1].

So what loads maximize strength?

Research indicates that maximal strength comes from lifting heavier loads [2]. This makes sense as the ability to produce high amounts of force is a skill that our nervous system needs to practice. So lifting heavier loads in the 5-10 rep range is ideal for maximizing top end strength. Interestingly, research shows, that we don’t have to go all the way to muscle failure to maximize strength and it actually might produce worse strength gains if you take sets to failure [3].

Next, what loads maximize hypertrophy?

Unlike strength, hypertrophy can be achieved well with a wide variety of rep ranges from 5-30 reps. However, hypertrophy requires getting closer to muscle failure, especially with higher rep sets [3]. For example, if you perform a biceps curl for 30 reps, it should be sufficiently heavy that you can only perform 31 or 32 reps total i.e. only having 1-2 repetitions in reserve.

So, should older adults lift heavy or light weights?

The answer is both, since both strength and muscle mass are important.

When deciding the weight/reps of an exercise we need to consider:

  1. How fatiguing the lift is: Generally compound, barbell lifts, such as barbell squats and deadlifts, are more fatiguing because they involve many muscle groups and require more spinal stabilization. If an exercise is more fatiguing it should be done for heavier loads. On the other hand, single joint exercises, such as a biceps curl, use few muscle groups and place little stability demands on the spine. Similarly, machine based exercises don’t require much spinal stabilization, so are not as fatiguing. These less fatiguing exercises should be done for lighter loads.

So, for compound, barbell lifts we should focus on heavier loads. At the other end of the spectrum, single joint and/or machine based lifts should be done at lighter loads.

2. How much technique is needed for the lift: Compound, free weight lifts such as squats, deadlifts and bench presses, require more technique and coordination to perform well. On the other hand, single joint exercises and/or machine based exercises require little technique to execute correctly.

If a lift requires more attention to technique we should perform it at lower rep ranges (with heavier loads). Conversely, if a lift requires less focus on technique, we should pick higher rep ranges (with lighter loads).

Finally, let’s get into recommendations for specific exercises. Note, these are general recommendations to serve as a starting point.

ExerciseRecommended Reps
Barbell deadlifts & squats5-10
Pullups & chin ups*5-10
Barbell presses (bench & overhead)5-10
Compound dumbbell lifts (bench press, overhead press, row)**10-20
Lunges & split squats**10-20
“Simple” squat variants (e.g. goblet squat)*10-20
Compound machine (e.g. leg press, chest press)***10-20
Single joint-free weight or machine (e.g. bicep curl)10-30

Finding your optimal weight/rep combination for a given exercise takes experimentation, ideally with a coach to guide that process.

A few notes on some of these recommendations:

*Pullups and chin-ups require some degree of technique and also demand more spinal stabilization than a machine exercise, like a lat pull down. Similarly, squat variants, like goblet squats, require less technique than a barbell squat, as well as, are difficult to load with heavy weights i.e. it is cumbersome to hold up a heavy dumbbell.

**Compound dumbbell lifts and lunges/split squats are more unstable then barbell lifts, so are difficult to load with heavy weights.

***Compound machine lifts are not technically demanding, but they are somewhat fatiguing since many muscle groups are being used at once.

References:

  1. https://renaissanceperiodization.com/chest-training-tips-hypertrophy/
  2. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW. Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. J Strength Cond Res. 2017;31(12):3508-3523. doi:10.1519/JSC.0000000000002200 https://pubmed.ncbi.nlm.nih.gov/28834797/
  3. Vieira AF, Umpierre D, Teodoro JL, et al. Effects of Resistance Training Performed to Failure or Not to Failure on Muscle Strength, Hypertrophy, and Power Output: A Systematic Review With Meta-Analysis. J Strength Cond Res. 2021;35(4):1165-1175. doi:10.1519/JSC.0000000000003936 https://pubmed.ncbi.nlm.nih.gov/33555822/

Optimal Protein Intake for Fitness After 50

Optimizing resistance training is crucial for the aging athlete, but we can’t forget about optimizing nutrition, especially protein intake.

Why such an emphasis on protein?

Protein (along with sufficient overall caloric intake) is critical to maintain muscle mass and strength, especially as one ages. Unfortunately, up to 40% of older adults do not even consume the Recommended Daily Amount (RDA) of protein of 0.8 grams/kilogram bodyweight/day (1). Note that the RDA was originally created based on the needs of young men to merely prevent nutritional deficiency, not to promote optimal health, muscle mass, or strength. Further, older athletes need to manage protein intake more closely than younger athletes because of metabolic changes that promote “anabolic resistance”, which is a decreased muscle protein synthesis (MPS) response to resistance exercise and/or protein consumption. Consuming protein and resistance exercise activate MPS , however with age that MPS response is decreased (1). Fortunately, if we engage in resistance exercise and eat sufficient, well-dosed amounts of protein, we can optimize MPS leading to better muscle mass and strength gains (2).

How Much Protein?

Most research points towards a protein range of 1.2-2.0 g/kg/day for optimal muscle mass and strength in the older adult (1). To track daily protein intake, there are many methods but my preferred is to use the Hand Measure System. This method uses the palm of your hand to roughly equate to 25 g of protein. For example, for a 70 kg woman, to hit 1.2 g/kg/day they would need to consume at least 84 g of protein per day—equating to about 3-4 palms of protein per day. As a side note, most protein powder supplements provide between 20-30 g of protein per serving.

How Often?

While the net amount of protein per day is most important, research indicates that consuming at least 25-30 g per meal maximizes the MPS, as opposed to a more uneven distribution (2). For example, consuming 15 g at breakfast then 15 g at lunch would lead to a lower MPS response as compared to consuming 30 g at breakfast.

Type of Protein?

As long as the total amount of protein is sufficient, the exact type is of little importance. Animal and plant proteins both support muscle mass and strength development, as long as total protein and energy intake are sufficient. For example, research in athletes comparing whey and plant based proteins has found no significant differences in muscle gain, strength development or psychometric measures like perceptions of soreness or readiness to train (3), (4).

So to sum up:

-For optimal muscle mass and strength, older adults should consume 1.2-2.0 g protein/kg bodyweight per day

-Servings of protein should ideally be consumed in doses of at least 25 grams per meal, spread throughout the day

-“1 palm size portion” of protein roughly equals 25 grams of protein

-Animal and plant proteins are effective, as long as one consumes a sufficient amount of protein

References:

  1. Baum JI, Kim IY, Wolfe RR. Protein Consumption and the Elderly: What Is the Optimal Level of Intake?. Nutrients. 2016;8(6):359. Published 2016 Jun 8. doi:10.3390/nu8060359
  2. Deer RR, Volpi E. Protein intake and muscle function in older adults. Curr Opin Clin Nutr Metab Care. 2015;18(3):248-253. doi:10.1097/MCO.0000000000000162
  3. Joy JM, Lowery RP, Wilson JM, et al. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance. Nutr J. 2013;12:86. Published 2013 Jun 20. doi:10.1186/1475-2891-12-86
  4. Banaszek A, Townsend JR, Bender D, Vantrease WC, Marshall AC, Johnson KD. The Effects of Whey vs. Pea Protein on Physical Adaptations Following 8-Weeks of High-Intensity Functional Training (HIFT): A Pilot Study. Sports (Basel). 2019;7(1):12. Published 2019 Jan 4. doi:10.3390/sports7010012

*This information is provided solely as general educational and informational purposes. Always consult your physician or health care provider before undertaking any changes in diet or physical activity.